/* * linux/drivers/video/omap2/dss/manager.c * * Copyright (C) 2009 Nokia Corporation * Author: Tomi Valkeinen * * Some code and ideas taken from drivers/video/omap/ driver * by Imre Deak. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #define DSS_SUBSYS_NAME "MANAGER" #include #include #include #include #include #include #include #include #include "dss.h" static int num_managers; static struct list_head manager_list; static ssize_t manager_name_show(struct omap_overlay_manager *mgr, char *buf) { return snprintf(buf, PAGE_SIZE, "%s\n", mgr->name); } static ssize_t manager_display_show(struct omap_overlay_manager *mgr, char *buf) { return snprintf(buf, PAGE_SIZE, "%s\n", mgr->device ? mgr->device->name : ""); } static ssize_t manager_display_store(struct omap_overlay_manager *mgr, const char *buf, size_t size) { int r = 0; size_t len = size; struct omap_dss_device *dssdev = NULL; int match(struct omap_dss_device *dssdev, void *data) { const char *str = data; return sysfs_streq(dssdev->name, str); } if (buf[size-1] == '\n') --len; if (len > 0) dssdev = omap_dss_find_device((void *)buf, match); if (len > 0 && dssdev == NULL) return -EINVAL; if (dssdev) DSSDBG("display %s found\n", dssdev->name); if (mgr->device) { r = mgr->unset_device(mgr); if (r) { DSSERR("failed to unset display\n"); goto put_device; } } if (dssdev) { r = mgr->set_device(mgr, dssdev); if (r) { DSSERR("failed to set manager\n"); goto put_device; } r = mgr->apply(mgr); if (r) { DSSERR("failed to apply dispc config\n"); goto put_device; } } put_device: if (dssdev) omap_dss_put_device(dssdev); return r ? r : size; } static ssize_t manager_default_color_show(struct omap_overlay_manager *mgr, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", mgr->info.default_color); } static ssize_t manager_default_color_store(struct omap_overlay_manager *mgr, const char *buf, size_t size) { struct omap_overlay_manager_info info; u32 color; int r; if (sscanf(buf, "%d", &color) != 1) return -EINVAL; mgr->get_manager_info(mgr, &info); info.default_color = color; r = mgr->set_manager_info(mgr, &info); if (r) return r; r = mgr->apply(mgr); if (r) return r; return size; } static const char *trans_key_type_str[] = { "gfx-destination", "video-source", }; static ssize_t manager_trans_key_type_show(struct omap_overlay_manager *mgr, char *buf) { enum omap_dss_trans_key_type key_type; key_type = mgr->info.trans_key_type; BUG_ON(key_type >= ARRAY_SIZE(trans_key_type_str)); return snprintf(buf, PAGE_SIZE, "%s\n", trans_key_type_str[key_type]); } static ssize_t manager_trans_key_type_store(struct omap_overlay_manager *mgr, const char *buf, size_t size) { enum omap_dss_trans_key_type key_type; struct omap_overlay_manager_info info; int r; for (key_type = OMAP_DSS_COLOR_KEY_GFX_DST; key_type < ARRAY_SIZE(trans_key_type_str); key_type++) { if (sysfs_streq(buf, trans_key_type_str[key_type])) break; } if (key_type == ARRAY_SIZE(trans_key_type_str)) return -EINVAL; mgr->get_manager_info(mgr, &info); info.trans_key_type = key_type; r = mgr->set_manager_info(mgr, &info); if (r) return r; r = mgr->apply(mgr); if (r) return r; return size; } static ssize_t manager_trans_key_value_show(struct omap_overlay_manager *mgr, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", mgr->info.trans_key); } static ssize_t manager_trans_key_value_store(struct omap_overlay_manager *mgr, const char *buf, size_t size) { struct omap_overlay_manager_info info; u32 key_value; int r; if (sscanf(buf, "%d", &key_value) != 1) return -EINVAL; mgr->get_manager_info(mgr, &info); info.trans_key = key_value; r = mgr->set_manager_info(mgr, &info); if (r) return r; r = mgr->apply(mgr); if (r) return r; return size; } static ssize_t manager_trans_key_enabled_show(struct omap_overlay_manager *mgr, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", mgr->info.trans_enabled); } static ssize_t manager_trans_key_enabled_store(struct omap_overlay_manager *mgr, const char *buf, size_t size) { struct omap_overlay_manager_info info; int enable; int r; if (sscanf(buf, "%d", &enable) != 1) return -EINVAL; mgr->get_manager_info(mgr, &info); info.trans_enabled = enable ? true : false; r = mgr->set_manager_info(mgr, &info); if (r) return r; r = mgr->apply(mgr); if (r) return r; return size; } static ssize_t manager_alpha_blending_enabled_show( struct omap_overlay_manager *mgr, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", mgr->info.alpha_enabled); } static ssize_t manager_alpha_blending_enabled_store( struct omap_overlay_manager *mgr, const char *buf, size_t size) { struct omap_overlay_manager_info info; int enable; int r; if (sscanf(buf, "%d", &enable) != 1) return -EINVAL; mgr->get_manager_info(mgr, &info); info.alpha_enabled = enable ? true : false; r = mgr->set_manager_info(mgr, &info); if (r) return r; r = mgr->apply(mgr); if (r) return r; return size; } struct manager_attribute { struct attribute attr; ssize_t (*show)(struct omap_overlay_manager *, char *); ssize_t (*store)(struct omap_overlay_manager *, const char *, size_t); }; #define MANAGER_ATTR(_name, _mode, _show, _store) \ struct manager_attribute manager_attr_##_name = \ __ATTR(_name, _mode, _show, _store) static MANAGER_ATTR(name, S_IRUGO, manager_name_show, NULL); static MANAGER_ATTR(display, S_IRUGO|S_IWUSR, manager_display_show, manager_display_store); static MANAGER_ATTR(default_color, S_IRUGO|S_IWUSR, manager_default_color_show, manager_default_color_store); static MANAGER_ATTR(trans_key_type, S_IRUGO|S_IWUSR, manager_trans_key_type_show, manager_trans_key_type_store); static MANAGER_ATTR(trans_key_value, S_IRUGO|S_IWUSR, manager_trans_key_value_show, manager_trans_key_value_store); static MANAGER_ATTR(trans_key_enabled, S_IRUGO|S_IWUSR, manager_trans_key_enabled_show, manager_trans_key_enabled_store); static MANAGER_ATTR(alpha_blending_enabled, S_IRUGO|S_IWUSR, manager_alpha_blending_enabled_show, manager_alpha_blending_enabled_store); static struct attribute *manager_sysfs_attrs[] = { &manager_attr_name.attr, &manager_attr_display.attr, &manager_attr_default_color.attr, &manager_attr_trans_key_type.attr, &manager_attr_trans_key_value.attr, &manager_attr_trans_key_enabled.attr, &manager_attr_alpha_blending_enabled.attr, NULL }; static ssize_t manager_attr_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct omap_overlay_manager *manager; struct manager_attribute *manager_attr; manager = container_of(kobj, struct omap_overlay_manager, kobj); manager_attr = container_of(attr, struct manager_attribute, attr); if (!manager_attr->show) return -ENOENT; return manager_attr->show(manager, buf); } static ssize_t manager_attr_store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t size) { struct omap_overlay_manager *manager; struct manager_attribute *manager_attr; manager = container_of(kobj, struct omap_overlay_manager, kobj); manager_attr = container_of(attr, struct manager_attribute, attr); if (!manager_attr->store) return -ENOENT; return manager_attr->store(manager, buf, size); } static const struct sysfs_ops manager_sysfs_ops = { .show = manager_attr_show, .store = manager_attr_store, }; static struct kobj_type manager_ktype = { .sysfs_ops = &manager_sysfs_ops, .default_attrs = manager_sysfs_attrs, }; /* * We have 4 levels of cache for the dispc settings. First two are in SW and * the latter two in HW. * * +--------------------+ * |overlay/manager_info| * +--------------------+ * v * apply() * v * +--------------------+ * | dss_cache | * +--------------------+ * v * configure() * v * +--------------------+ * | shadow registers | * +--------------------+ * v * VFP or lcd/digit_enable * v * +--------------------+ * | registers | * +--------------------+ */ struct overlay_cache_data { /* If true, cache changed, but not written to shadow registers. Set * in apply(), cleared when registers written. */ bool dirty; /* If true, shadow registers contain changed values not yet in real * registers. Set when writing to shadow registers, cleared at * VSYNC/EVSYNC */ bool shadow_dirty; bool enabled; u32 paddr; void __iomem *vaddr; u16 screen_width; u16 width; u16 height; enum omap_color_mode color_mode; u8 rotation; enum omap_dss_rotation_type rotation_type; bool mirror; u16 pos_x; u16 pos_y; u16 out_width; /* if 0, out_width == width */ u16 out_height; /* if 0, out_height == height */ u8 global_alpha; enum omap_channel channel; bool replication; bool ilace; enum omap_burst_size burst_size; u32 fifo_low; u32 fifo_high; bool manual_update; }; struct manager_cache_data { /* If true, cache changed, but not written to shadow registers. Set * in apply(), cleared when registers written. */ bool dirty; /* If true, shadow registers contain changed values not yet in real * registers. Set when writing to shadow registers, cleared at * VSYNC/EVSYNC */ bool shadow_dirty; u32 default_color; enum omap_dss_trans_key_type trans_key_type; u32 trans_key; bool trans_enabled; bool alpha_enabled; bool manual_upd_display; bool manual_update; bool do_manual_update; /* manual update region */ u16 x, y, w, h; /* enlarge the update area if the update area contains scaled * overlays */ bool enlarge_update_area; }; static struct { spinlock_t lock; struct overlay_cache_data overlay_cache[3]; struct manager_cache_data manager_cache[2]; bool irq_enabled; } dss_cache; static int omap_dss_set_device(struct omap_overlay_manager *mgr, struct omap_dss_device *dssdev) { int i; int r; if (dssdev->manager) { DSSERR("display '%s' already has a manager '%s'\n", dssdev->name, dssdev->manager->name); return -EINVAL; } if ((mgr->supported_displays & dssdev->type) == 0) { DSSERR("display '%s' does not support manager '%s'\n", dssdev->name, mgr->name); return -EINVAL; } for (i = 0; i < mgr->num_overlays; i++) { struct omap_overlay *ovl = mgr->overlays[i]; if (ovl->manager != mgr || !ovl->info.enabled) continue; r = dss_check_overlay(ovl, dssdev); if (r) return r; } dssdev->manager = mgr; mgr->device = dssdev; mgr->device_changed = true; return 0; } static int omap_dss_unset_device(struct omap_overlay_manager *mgr) { if (!mgr->device) { DSSERR("failed to unset display, display not set.\n"); return -EINVAL; } mgr->device->manager = NULL; mgr->device = NULL; mgr->device_changed = true; return 0; } static int dss_mgr_wait_for_vsync(struct omap_overlay_manager *mgr) { unsigned long timeout = msecs_to_jiffies(500); u32 irq; if (mgr->device->type == OMAP_DISPLAY_TYPE_VENC) irq = DISPC_IRQ_EVSYNC_ODD; else irq = DISPC_IRQ_VSYNC; return omap_dispc_wait_for_irq_interruptible_timeout(irq, timeout); } static int dss_mgr_wait_for_go(struct omap_overlay_manager *mgr) { unsigned long timeout = msecs_to_jiffies(500); struct manager_cache_data *mc; enum omap_channel channel; u32 irq; int r; int i; struct omap_dss_device *dssdev = mgr->device; if (!dssdev || dssdev->state != OMAP_DSS_DISPLAY_ACTIVE) return 0; if (dssdev->type == OMAP_DISPLAY_TYPE_VENC) { irq = DISPC_IRQ_EVSYNC_ODD | DISPC_IRQ_EVSYNC_EVEN; channel = OMAP_DSS_CHANNEL_DIGIT; } else { if (dssdev->caps & OMAP_DSS_DISPLAY_CAP_MANUAL_UPDATE) { enum omap_dss_update_mode mode; mode = dssdev->driver->get_update_mode(dssdev); if (mode != OMAP_DSS_UPDATE_AUTO) return 0; irq = DISPC_IRQ_FRAMEDONE; } else { irq = DISPC_IRQ_VSYNC; } channel = OMAP_DSS_CHANNEL_LCD; } mc = &dss_cache.manager_cache[mgr->id]; i = 0; while (1) { unsigned long flags; bool shadow_dirty, dirty; spin_lock_irqsave(&dss_cache.lock, flags); dirty = mc->dirty; shadow_dirty = mc->shadow_dirty; spin_unlock_irqrestore(&dss_cache.lock, flags); if (!dirty && !shadow_dirty) { r = 0; break; } /* 4 iterations is the worst case: * 1 - initial iteration, dirty = true (between VFP and VSYNC) * 2 - first VSYNC, dirty = true * 3 - dirty = false, shadow_dirty = true * 4 - shadow_dirty = false */ if (i++ == 3) { DSSERR("mgr(%d)->wait_for_go() not finishing\n", mgr->id); r = 0; break; } r = omap_dispc_wait_for_irq_interruptible_timeout(irq, timeout); if (r == -ERESTARTSYS) break; if (r) { DSSERR("mgr(%d)->wait_for_go() timeout\n", mgr->id); break; } } return r; } int dss_mgr_wait_for_go_ovl(struct omap_overlay *ovl) { unsigned long timeout = msecs_to_jiffies(500); enum omap_channel channel; struct overlay_cache_data *oc; struct omap_dss_device *dssdev; u32 irq; int r; int i; if (!ovl->manager) return 0; dssdev = ovl->manager->device; if (!dssdev || dssdev->state != OMAP_DSS_DISPLAY_ACTIVE) return 0; if (dssdev->type == OMAP_DISPLAY_TYPE_VENC) { irq = DISPC_IRQ_EVSYNC_ODD | DISPC_IRQ_EVSYNC_EVEN; channel = OMAP_DSS_CHANNEL_DIGIT; } else { if (dssdev->caps & OMAP_DSS_DISPLAY_CAP_MANUAL_UPDATE) { enum omap_dss_update_mode mode; mode = dssdev->driver->get_update_mode(dssdev); if (mode != OMAP_DSS_UPDATE_AUTO) return 0; irq = DISPC_IRQ_FRAMEDONE; } else { irq = DISPC_IRQ_VSYNC; } channel = OMAP_DSS_CHANNEL_LCD; } oc = &dss_cache.overlay_cache[ovl->id]; i = 0; while (1) { unsigned long flags; bool shadow_dirty, dirty; spin_lock_irqsave(&dss_cache.lock, flags); dirty = oc->dirty; shadow_dirty = oc->shadow_dirty; spin_unlock_irqrestore(&dss_cache.lock, flags); if (!dirty && !shadow_dirty) { r = 0; break; } /* 4 iterations is the worst case: * 1 - initial iteration, dirty = true (between VFP and VSYNC) * 2 - first VSYNC, dirty = true * 3 - dirty = false, shadow_dirty = true * 4 - shadow_dirty = false */ if (i++ == 3) { DSSERR("ovl(%d)->wait_for_go() not finishing\n", ovl->id); r = 0; break; } r = omap_dispc_wait_for_irq_interruptible_timeout(irq, timeout); if (r == -ERESTARTSYS) break; if (r) { DSSERR("ovl(%d)->wait_for_go() timeout\n", ovl->id); break; } } return r; } static int overlay_enabled(struct omap_overlay *ovl) { return ovl->info.enabled && ovl->manager && ovl->manager->device; } /* Is rect1 a subset of rect2? */ static bool rectangle_subset(int x1, int y1, int w1, int h1, int x2, int y2, int w2, int h2) { if (x1 < x2 || y1 < y2) return false; if (x1 + w1 > x2 + w2) return false; if (y1 + h1 > y2 + h2) return false; return true; } /* Do rect1 and rect2 overlap? */ static bool rectangle_intersects(int x1, int y1, int w1, int h1, int x2, int y2, int w2, int h2) { if (x1 >= x2 + w2) return false; if (x2 >= x1 + w1) return false; if (y1 >= y2 + h2) return false; if (y2 >= y1 + h1) return false; return true; } static bool dispc_is_overlay_scaled(struct overlay_cache_data *oc) { if (oc->out_width != 0 && oc->width != oc->out_width) return true; if (oc->out_height != 0 && oc->height != oc->out_height) return true; return false; } static int configure_overlay(enum omap_plane plane) { struct overlay_cache_data *c; struct manager_cache_data *mc; u16 outw, outh; u16 x, y, w, h; u32 paddr; int r; u16 orig_w, orig_h, orig_outw, orig_outh; DSSDBGF("%d", plane); c = &dss_cache.overlay_cache[plane]; if (!c->enabled) { dispc_enable_plane(plane, 0); return 0; } mc = &dss_cache.manager_cache[c->channel]; x = c->pos_x; y = c->pos_y; w = c->width; h = c->height; outw = c->out_width == 0 ? c->width : c->out_width; outh = c->out_height == 0 ? c->height : c->out_height; paddr = c->paddr; orig_w = w; orig_h = h; orig_outw = outw; orig_outh = outh; if (c->manual_update && mc->do_manual_update) { unsigned bpp; unsigned scale_x_m = w, scale_x_d = outw; unsigned scale_y_m = h, scale_y_d = outh; /* If the overlay is outside the update region, disable it */ if (!rectangle_intersects(mc->x, mc->y, mc->w, mc->h, x, y, outw, outh)) { dispc_enable_plane(plane, 0); return 0; } switch (c->color_mode) { case OMAP_DSS_COLOR_RGB16: case OMAP_DSS_COLOR_ARGB16: case OMAP_DSS_COLOR_YUV2: case OMAP_DSS_COLOR_UYVY: bpp = 16; break; case OMAP_DSS_COLOR_RGB24P: bpp = 24; break; case OMAP_DSS_COLOR_RGB24U: case OMAP_DSS_COLOR_ARGB32: case OMAP_DSS_COLOR_RGBA32: case OMAP_DSS_COLOR_RGBX32: bpp = 32; break; default: BUG(); } if (mc->x > c->pos_x) { x = 0; outw -= (mc->x - c->pos_x); paddr += (mc->x - c->pos_x) * scale_x_m / scale_x_d * bpp / 8; } else { x = c->pos_x - mc->x; } if (mc->y > c->pos_y) { y = 0; outh -= (mc->y - c->pos_y); paddr += (mc->y - c->pos_y) * scale_y_m / scale_y_d * c->screen_width * bpp / 8; } else { y = c->pos_y - mc->y; } if (mc->w < (x + outw)) outw -= (x + outw) - (mc->w); if (mc->h < (y + outh)) outh -= (y + outh) - (mc->h); w = w * outw / orig_outw; h = h * outh / orig_outh; /* YUV mode overlay's input width has to be even and the * algorithm above may adjust the width to be odd. * * Here we adjust the width if needed, preferring to increase * the width if the original width was bigger. */ if ((w & 1) && (c->color_mode == OMAP_DSS_COLOR_YUV2 || c->color_mode == OMAP_DSS_COLOR_UYVY)) { if (orig_w > w) w += 1; else w -= 1; } } r = dispc_setup_plane(plane, paddr, c->screen_width, x, y, w, h, outw, outh, c->color_mode, c->ilace, c->rotation_type, c->rotation, c->mirror, c->global_alpha); if (r) { /* this shouldn't happen */ DSSERR("dispc_setup_plane failed for ovl %d\n", plane); dispc_enable_plane(plane, 0); return r; } dispc_enable_replication(plane, c->replication); dispc_set_burst_size(plane, c->burst_size); dispc_setup_plane_fifo(plane, c->fifo_low, c->fifo_high); dispc_enable_plane(plane, 1); return 0; } static void configure_manager(enum omap_channel channel) { struct manager_cache_data *c; DSSDBGF("%d", channel); c = &dss_cache.manager_cache[channel]; dispc_set_default_color(channel, c->default_color); dispc_set_trans_key(channel, c->trans_key_type, c->trans_key); dispc_enable_trans_key(channel, c->trans_enabled); dispc_enable_alpha_blending(channel, c->alpha_enabled); } /* configure_dispc() tries to write values from cache to shadow registers. * It writes only to those managers/overlays that are not busy. * returns 0 if everything could be written to shadow registers. * returns 1 if not everything could be written to shadow registers. */ static int configure_dispc(void) { struct overlay_cache_data *oc; struct manager_cache_data *mc; const int num_ovls = ARRAY_SIZE(dss_cache.overlay_cache); const int num_mgrs = ARRAY_SIZE(dss_cache.manager_cache); int i; int r; bool mgr_busy[2]; bool mgr_go[2]; bool busy; r = 0; busy = false; mgr_busy[0] = dispc_go_busy(0); mgr_busy[1] = dispc_go_busy(1); mgr_go[0] = false; mgr_go[1] = false; /* Commit overlay settings */ for (i = 0; i < num_ovls; ++i) { oc = &dss_cache.overlay_cache[i]; mc = &dss_cache.manager_cache[oc->channel]; if (!oc->dirty) continue; if (oc->manual_update && !mc->do_manual_update) continue; if (mgr_busy[oc->channel]) { busy = true; continue; } r = configure_overlay(i); if (r) DSSERR("configure_overlay %d failed\n", i); oc->dirty = false; oc->shadow_dirty = true; mgr_go[oc->channel] = true; } /* Commit manager settings */ for (i = 0; i < num_mgrs; ++i) { mc = &dss_cache.manager_cache[i]; if (!mc->dirty) continue; if (mc->manual_update && !mc->do_manual_update) continue; if (mgr_busy[i]) { busy = true; continue; } configure_manager(i); mc->dirty = false; mc->shadow_dirty = true; mgr_go[i] = true; } /* set GO */ for (i = 0; i < num_mgrs; ++i) { mc = &dss_cache.manager_cache[i]; if (!mgr_go[i]) continue; /* We don't need GO with manual update display. LCD iface will * always be turned off after frame, and new settings will be * taken in to use at next update */ if (!mc->manual_upd_display) dispc_go(i); } if (busy) r = 1; else r = 0; return r; } /* Make the coordinates even. There are some strange problems with OMAP and * partial DSI update when the update widths are odd. */ static void make_even(u16 *x, u16 *w) { u16 x1, x2; x1 = *x; x2 = *x + *w; x1 &= ~1; x2 = ALIGN(x2, 2); *x = x1; *w = x2 - x1; } /* Configure dispc for partial update. Return possibly modified update * area */ void dss_setup_partial_planes(struct omap_dss_device *dssdev, u16 *xi, u16 *yi, u16 *wi, u16 *hi, bool enlarge_update_area) { struct overlay_cache_data *oc; struct manager_cache_data *mc; const int num_ovls = ARRAY_SIZE(dss_cache.overlay_cache); struct omap_overlay_manager *mgr; int i; u16 x, y, w, h; unsigned long flags; bool area_changed; x = *xi; y = *yi; w = *wi; h = *hi; DSSDBG("dispc_setup_partial_planes %d,%d %dx%d\n", *xi, *yi, *wi, *hi); mgr = dssdev->manager; if (!mgr) { DSSDBG("no manager\n"); return; } make_even(&x, &w); spin_lock_irqsave(&dss_cache.lock, flags); /* * Execute the outer loop until the inner loop has completed * once without increasing the update area. This will ensure that * all scaled overlays end up completely within the update area. */ do { area_changed = false; /* We need to show the whole overlay if it is scaled. So look * for those, and make the update area larger if found. * Also mark the overlay cache dirty */ for (i = 0; i < num_ovls; ++i) { unsigned x1, y1, x2, y2; unsigned outw, outh; oc = &dss_cache.overlay_cache[i]; if (oc->channel != mgr->id) continue; oc->dirty = true; if (!enlarge_update_area) continue; if (!oc->enabled) continue; if (!dispc_is_overlay_scaled(oc)) continue; outw = oc->out_width == 0 ? oc->width : oc->out_width; outh = oc->out_height == 0 ? oc->height : oc->out_height; /* is the overlay outside the update region? */ if (!rectangle_intersects(x, y, w, h, oc->pos_x, oc->pos_y, outw, outh)) continue; /* if the overlay totally inside the update region? */ if (rectangle_subset(oc->pos_x, oc->pos_y, outw, outh, x, y, w, h)) continue; if (x > oc->pos_x) x1 = oc->pos_x; else x1 = x; if (y > oc->pos_y) y1 = oc->pos_y; else y1 = y; if ((x + w) < (oc->pos_x + outw)) x2 = oc->pos_x + outw; else x2 = x + w; if ((y + h) < (oc->pos_y + outh)) y2 = oc->pos_y + outh; else y2 = y + h; x = x1; y = y1; w = x2 - x1; h = y2 - y1; make_even(&x, &w); DSSDBG("changing upd area due to ovl(%d) " "scaling %d,%d %dx%d\n", i, x, y, w, h); area_changed = true; } } while (area_changed); mc = &dss_cache.manager_cache[mgr->id]; mc->do_manual_update = true; mc->enlarge_update_area = enlarge_update_area; mc->x = x; mc->y = y; mc->w = w; mc->h = h; configure_dispc(); mc->do_manual_update = false; spin_unlock_irqrestore(&dss_cache.lock, flags); *xi = x; *yi = y; *wi = w; *hi = h; } void dss_start_update(struct omap_dss_device *dssdev) { struct manager_cache_data *mc; struct overlay_cache_data *oc; const int num_ovls = ARRAY_SIZE(dss_cache.overlay_cache); const int num_mgrs = ARRAY_SIZE(dss_cache.manager_cache); struct omap_overlay_manager *mgr; int i; mgr = dssdev->manager; for (i = 0; i < num_ovls; ++i) { oc = &dss_cache.overlay_cache[i]; if (oc->channel != mgr->id) continue; oc->shadow_dirty = false; } for (i = 0; i < num_mgrs; ++i) { mc = &dss_cache.manager_cache[i]; if (mgr->id != i) continue; mc->shadow_dirty = false; } dssdev->manager->enable(dssdev->manager); } static void dss_apply_irq_handler(void *data, u32 mask) { struct manager_cache_data *mc; struct overlay_cache_data *oc; const int num_ovls = ARRAY_SIZE(dss_cache.overlay_cache); const int num_mgrs = ARRAY_SIZE(dss_cache.manager_cache); int i, r; bool mgr_busy[2]; mgr_busy[0] = dispc_go_busy(0); mgr_busy[1] = dispc_go_busy(1); spin_lock(&dss_cache.lock); for (i = 0; i < num_ovls; ++i) { oc = &dss_cache.overlay_cache[i]; if (!mgr_busy[oc->channel]) oc->shadow_dirty = false; } for (i = 0; i < num_mgrs; ++i) { mc = &dss_cache.manager_cache[i]; if (!mgr_busy[i]) mc->shadow_dirty = false; } r = configure_dispc(); if (r == 1) goto end; /* re-read busy flags */ mgr_busy[0] = dispc_go_busy(0); mgr_busy[1] = dispc_go_busy(1); /* keep running as long as there are busy managers, so that * we can collect overlay-applied information */ for (i = 0; i < num_mgrs; ++i) { if (mgr_busy[i]) goto end; } omap_dispc_unregister_isr(dss_apply_irq_handler, NULL, DISPC_IRQ_VSYNC | DISPC_IRQ_EVSYNC_ODD | DISPC_IRQ_EVSYNC_EVEN); dss_cache.irq_enabled = false; end: spin_unlock(&dss_cache.lock); } static int omap_dss_mgr_apply(struct omap_overlay_manager *mgr) { struct overlay_cache_data *oc; struct manager_cache_data *mc; int i; struct omap_overlay *ovl; int num_planes_enabled = 0; bool use_fifomerge; unsigned long flags; int r; DSSDBG("omap_dss_mgr_apply(%s)\n", mgr->name); spin_lock_irqsave(&dss_cache.lock, flags); /* Configure overlays */ for (i = 0; i < omap_dss_get_num_overlays(); ++i) { struct omap_dss_device *dssdev; ovl = omap_dss_get_overlay(i); if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC)) continue; oc = &dss_cache.overlay_cache[ovl->id]; if (!overlay_enabled(ovl)) { if (oc->enabled) { oc->enabled = false; oc->dirty = true; } continue; } if (!ovl->info_dirty) { if (oc->enabled) ++num_planes_enabled; continue; } dssdev = ovl->manager->device; if (dss_check_overlay(ovl, dssdev)) { if (oc->enabled) { oc->enabled = false; oc->dirty = true; } continue; } ovl->info_dirty = false; oc->dirty = true; oc->paddr = ovl->info.paddr; oc->vaddr = ovl->info.vaddr; oc->screen_width = ovl->info.screen_width; oc->width = ovl->info.width; oc->height = ovl->info.height; oc->color_mode = ovl->info.color_mode; oc->rotation = ovl->info.rotation; oc->rotation_type = ovl->info.rotation_type; oc->mirror = ovl->info.mirror; oc->pos_x = ovl->info.pos_x; oc->pos_y = ovl->info.pos_y; oc->out_width = ovl->info.out_width; oc->out_height = ovl->info.out_height; oc->global_alpha = ovl->info.global_alpha; oc->replication = dss_use_replication(dssdev, ovl->info.color_mode); oc->ilace = dssdev->type == OMAP_DISPLAY_TYPE_VENC; oc->channel = ovl->manager->id; oc->enabled = true; oc->manual_update = dssdev->caps & OMAP_DSS_DISPLAY_CAP_MANUAL_UPDATE && dssdev->driver->get_update_mode(dssdev) != OMAP_DSS_UPDATE_AUTO; ++num_planes_enabled; } /* Configure managers */ list_for_each_entry(mgr, &manager_list, list) { struct omap_dss_device *dssdev; if (!(mgr->caps & OMAP_DSS_OVL_MGR_CAP_DISPC)) continue; mc = &dss_cache.manager_cache[mgr->id]; if (mgr->device_changed) { mgr->device_changed = false; mgr->info_dirty = true; } if (!mgr->info_dirty) continue; if (!mgr->device) continue; dssdev = mgr->device; mgr->info_dirty = false; mc->dirty = true; mc->default_color = mgr->info.default_color; mc->trans_key_type = mgr->info.trans_key_type; mc->trans_key = mgr->info.trans_key; mc->trans_enabled = mgr->info.trans_enabled; mc->alpha_enabled = mgr->info.alpha_enabled; mc->manual_upd_display = dssdev->caps & OMAP_DSS_DISPLAY_CAP_MANUAL_UPDATE; mc->manual_update = dssdev->caps & OMAP_DSS_DISPLAY_CAP_MANUAL_UPDATE && dssdev->driver->get_update_mode(dssdev) != OMAP_DSS_UPDATE_AUTO; } /* XXX TODO: Try to get fifomerge working. The problem is that it * affects both managers, not individually but at the same time. This * means the change has to be well synchronized. I guess the proper way * is to have a two step process for fifo merge: * fifomerge enable: * 1. disable other planes, leaving one plane enabled * 2. wait until the planes are disabled on HW * 3. config merged fifo thresholds, enable fifomerge * fifomerge disable: * 1. config unmerged fifo thresholds, disable fifomerge * 2. wait until fifo changes are in HW * 3. enable planes */ use_fifomerge = false; /* Configure overlay fifos */ for (i = 0; i < omap_dss_get_num_overlays(); ++i) { struct omap_dss_device *dssdev; u32 size; ovl = omap_dss_get_overlay(i); if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC)) continue; oc = &dss_cache.overlay_cache[ovl->id]; if (!oc->enabled) continue; dssdev = ovl->manager->device; size = dispc_get_plane_fifo_size(ovl->id); if (use_fifomerge) size *= 3; switch (dssdev->type) { case OMAP_DISPLAY_TYPE_DPI: case OMAP_DISPLAY_TYPE_DBI: case OMAP_DISPLAY_TYPE_SDI: case OMAP_DISPLAY_TYPE_VENC: default_get_overlay_fifo_thresholds(ovl->id, size, &oc->burst_size, &oc->fifo_low, &oc->fifo_high); break; #ifdef CONFIG_OMAP2_DSS_DSI case OMAP_DISPLAY_TYPE_DSI: dsi_get_overlay_fifo_thresholds(ovl->id, size, &oc->burst_size, &oc->fifo_low, &oc->fifo_high); break; #endif default: BUG(); } } r = 0; dss_clk_enable(DSS_CLK_ICK | DSS_CLK_FCK1); if (!dss_cache.irq_enabled) { r = omap_dispc_register_isr(dss_apply_irq_handler, NULL, DISPC_IRQ_VSYNC | DISPC_IRQ_EVSYNC_ODD | DISPC_IRQ_EVSYNC_EVEN); dss_cache.irq_enabled = true; } configure_dispc(); dss_clk_disable(DSS_CLK_ICK | DSS_CLK_FCK1); spin_unlock_irqrestore(&dss_cache.lock, flags); return r; } static int dss_check_manager(struct omap_overlay_manager *mgr) { /* OMAP supports only graphics source transparency color key and alpha * blending simultaneously. See TRM 15.4.2.4.2.2 Alpha Mode */ if (mgr->info.alpha_enabled && mgr->info.trans_enabled && mgr->info.trans_key_type != OMAP_DSS_COLOR_KEY_GFX_DST) return -EINVAL; return 0; } static int omap_dss_mgr_set_info(struct omap_overlay_manager *mgr, struct omap_overlay_manager_info *info) { int r; struct omap_overlay_manager_info old_info; old_info = mgr->info; mgr->info = *info; r = dss_check_manager(mgr); if (r) { mgr->info = old_info; return r; } mgr->info_dirty = true; return 0; } static void omap_dss_mgr_get_info(struct omap_overlay_manager *mgr, struct omap_overlay_manager_info *info) { *info = mgr->info; } static int dss_mgr_enable(struct omap_overlay_manager *mgr) { dispc_enable_channel(mgr->id, 1); return 0; } static int dss_mgr_disable(struct omap_overlay_manager *mgr) { dispc_enable_channel(mgr->id, 0); return 0; } static void omap_dss_add_overlay_manager(struct omap_overlay_manager *manager) { ++num_managers; list_add_tail(&manager->list, &manager_list); } int dss_init_overlay_managers(struct platform_device *pdev) { int i, r; spin_lock_init(&dss_cache.lock); INIT_LIST_HEAD(&manager_list); num_managers = 0; for (i = 0; i < 2; ++i) { struct omap_overlay_manager *mgr; mgr = kzalloc(sizeof(*mgr), GFP_KERNEL); BUG_ON(mgr == NULL); switch (i) { case 0: mgr->name = "lcd"; mgr->id = OMAP_DSS_CHANNEL_LCD; mgr->supported_displays = OMAP_DISPLAY_TYPE_DPI | OMAP_DISPLAY_TYPE_DBI | OMAP_DISPLAY_TYPE_SDI | OMAP_DISPLAY_TYPE_DSI; break; case 1: mgr->name = "tv"; mgr->id = OMAP_DSS_CHANNEL_DIGIT; mgr->supported_displays = OMAP_DISPLAY_TYPE_VENC; break; } mgr->set_device = &omap_dss_set_device; mgr->unset_device = &omap_dss_unset_device; mgr->apply = &omap_dss_mgr_apply; mgr->set_manager_info = &omap_dss_mgr_set_info; mgr->get_manager_info = &omap_dss_mgr_get_info; mgr->wait_for_go = &dss_mgr_wait_for_go; mgr->wait_for_vsync = &dss_mgr_wait_for_vsync; mgr->enable = &dss_mgr_enable; mgr->disable = &dss_mgr_disable; mgr->caps = OMAP_DSS_OVL_MGR_CAP_DISPC; dss_overlay_setup_dispc_manager(mgr); omap_dss_add_overlay_manager(mgr); r = kobject_init_and_add(&mgr->kobj, &manager_ktype, &pdev->dev.kobj, "manager%d", i); if (r) { DSSERR("failed to create sysfs file\n"); continue; } } #ifdef L4_EXAMPLE { int omap_dss_mgr_apply_l4(struct omap_overlay_manager *mgr) { DSSDBG("omap_dss_mgr_apply_l4(%s)\n", mgr->name); return 0; } struct omap_overlay_manager *mgr; mgr = kzalloc(sizeof(*mgr), GFP_KERNEL); BUG_ON(mgr == NULL); mgr->name = "l4"; mgr->supported_displays = OMAP_DISPLAY_TYPE_DBI | OMAP_DISPLAY_TYPE_DSI; mgr->set_device = &omap_dss_set_device; mgr->unset_device = &omap_dss_unset_device; mgr->apply = &omap_dss_mgr_apply_l4; mgr->set_manager_info = &omap_dss_mgr_set_info; mgr->get_manager_info = &omap_dss_mgr_get_info; dss_overlay_setup_l4_manager(mgr); omap_dss_add_overlay_manager(mgr); r = kobject_init_and_add(&mgr->kobj, &manager_ktype, &pdev->dev.kobj, "managerl4"); if (r) DSSERR("failed to create sysfs file\n"); } #endif return 0; } void dss_uninit_overlay_managers(struct platform_device *pdev) { struct omap_overlay_manager *mgr; while (!list_empty(&manager_list)) { mgr = list_first_entry(&manager_list, struct omap_overlay_manager, list); list_del(&mgr->list); kobject_del(&mgr->kobj); kobject_put(&mgr->kobj); kfree(mgr); } num_managers = 0; } int omap_dss_get_num_overlay_managers(void) { return num_managers; } EXPORT_SYMBOL(omap_dss_get_num_overlay_managers); struct omap_overlay_manager *omap_dss_get_overlay_manager(int num) { int i = 0; struct omap_overlay_manager *mgr; list_for_each_entry(mgr, &manager_list, list) { if (i++ == num) return mgr; } return NULL; } EXPORT_SYMBOL(omap_dss_get_overlay_manager);